Improving NOAA’s Capacity to Address Coastal Inundation Events

The Storm Surge Roadmap

Jesse C. Feyen
Storm Surge Roadmap Portfolio Manager
NOS/Office of Coast Survey /Development Laboratory
The Vision

Highly accurate, relevant, and timely information

CLEARLY COMMUNICATED

which results in reductions in loss of life and ensures communities are resilient

Modeling’s role is to provide information to those who assess and communicate risk...
Roadmap Guiding Principles

• Storm surge enterprise is a NOAA-wide program
 – Shared priorities, coordinated execution
• Need to efficiently maintain and upgrade systems
 – Leverage community-based approaches
 – Functionally align activities with expertise (don’t duplicate efforts or knowledge)
• Must be customer-driven
 – Customers’ requirements set what needs to be done; technical experts determine how
• Need to provide national capacity
 – Little value to one-offs
Operational Modeling Requirements

• Emergency managers and decision makers rely on official, authoritative NWS forecasts to support tough decisions during crisis events
 – Modelers should not duplicate or conflict with official forecasts! User confusion can lead to inaction or poor decision-making

• NWS forecasters rely heavily on operational model guidance within their system (AWIPS)
 – Accessing external data can be challenging and time consuming, particularly during an event
 – Confidence may be low
Advanced Weather Interactive Processing System (AWIPS)

169 separate AWIPS systems at 137 geographical locations

AWIPS Workstations and Servers

~900 Workstations (total)
~1200 Servers (total)

Service provided to 3066 US Counties
24 hrs/day, 365 days/yr.
Transitioning Improved Modeling to Operations

- NSW operational system heavily prioritizes robustness
 - 99.99% uptime using well-vetted, “hands-off” systems
 - Robust, standardized model skill assessments and testing before transition to operations
- Development “pipeline”
Considerations for IOOS RA Modeling

• RAs provide focus on advancing science and focusing on local issues (i.e., resolution)
• Consider federal modeling transition groups a primary customer
 – Understand operational requirements and consider those in planning
• Use of community-based models, standards and frameworks shortens transition to operations
 – Common data format and dissemination can speed use before operations
Model Improvements Prioritized by NOAA’s Storm Surge Roadmap

• Storm surge model predictions that are:
 – Ensembled and/or probabilistic
 – High resolution
 – Able to capture dynamics of large scale storms
 – Include all factors that contribute to total water level of flooding: surge, tides, waves, and river inflow
 – Community-based to leverage multi-agency investments (e.g., ADCIRC)
Concept of a Next Generation Storm Surge System

- Hurricane Modeling
 - Ensemble output (e.g., HWRF)
 - NHC Official Forecast Tracks

- Tidal Database

- Hydrologic Modeling
 - Precipitation
 - Inflow

- Storm Surge Modeling
 - Wind, Pressure
 - Water Level, Currents
 - Water Level
 - River Level

- Wave Modeling
 - Wave spectra
 - Wind, Pressure
 - Water Level, Currents

- Products
 - GIS-based
 - Inundation graphics
 - Hydrographs
 - Wave Conditions
 - Ensembles

Coastal hazards modeling
- Flexible grids that combine large regions with locally high resolution
- Combine effects of surge + tide + waves + rivers to assess flooding
Total Water Level: Adding Tides to SLOSH

- NOS’ ADCIRC tide predictions coupled to NWS’ surge model
- Operational requirement for probabilistic model P_{surge} (hundreds of SLOSH tracks per forecast)
Improving Extratropical Surge Prediction

- Extratropical Surge+Tide Operational Forecast System (ESTOFS) operational in 2012
- Computes surge with tides for forecasting and for coupling to NCEP’s WAVEWATCHIII® and Nearshore Wave Pred. System
- NOS developed with ADCIRC
 - Coastal resolution \(\approx 3 \) km
 - 6-hr nowcast followed by 180-hr forecast
- Pacific in development
Providing Water Level Fields to Forecasters

EC2001 grid (NetCDF) NDFD 2.5 km CONUS grid (GRIB2)
Nearshore Wave Prediction System (NWPS)

- Extension of operational wave modeling to the shore
- Run locally, on-demand, using SWAN or nearshore WWIII --> moving to unstructured grids
- Included in the AWIPS II baseline
- Addresses regionally-specific high impact issues in the nearshore (surf breaking, wave-current interaction, etc.)
- Driven by forecaster-developed wind grids
- Using ADCIRC grids and being coupled to ESTOFS
Experimental High Res Surge Ensemble

• ADCIRC Surge Guidance System
 – Automated system for ADCIRC + SWAN running on tjet as part of HFIP
 – Forced by NAM or NHC advisories
 – Utilizes community library of ADCIRC grids
 – Support from USACE and DHS; maintained by researchers at UNC-CH and partners

• Perturbs official NHC forecast
 – Official forecast track, wind speed increase, veer halfway/fully to edges of cone, slower forward speed, change in Rmax
Ensemble Forecast to Address Track Uncertainty

Official Track

20% More Intense

Left shift

Right Shift
IOOS Testbed: using Community-Based Models to Improve Operations

• Provides shared, systematic methodology for evaluating benefits of research models for transition to operations

• Coastal inundation subgroup
 – Tropical (Ike, Rita) and extratropical (Scituate, MA)
 – Evaluating community-based research models
 – Provided SLOSH coupled to SWAN wave model, experimental hi res ADCIRC surge guidance system
 – Proposed extension to Puerto Rico (island waves)
CI-FLOW: combining coastal and inland flood prediction

- NSSL leading collaborative effort to research coupled precip+hydrologic+hydraulic+coastal flood prediction
- Real-time predictions in Pamlico Sound; beginning second project in Louisiana
- Informs coupling strategies for operational modeling of rivers and coasts
- Collaborators include NOS, NWS, academia

http://www.nssl.noaa.gov/projects/ciflow/
CI-FLOW Precipitation
- Past Precip: Gauge-adjusted QPE from NSSL’s NMQ/Q2 (aka, MRMS), 1-hour accumulation
- Forecast Precip: QPF from HPC, 6-hour accumulation

CI-FLOW Hydrology
- NWS HL-RDHM (Hydro Lab – Res. Distributed Hydro Model)
- SACramento Soil Moisture Accounting (SAC-SMA)
- Kinematic Wave Model for routing
- 128 ensemble members

CI-FLOW Storm Surge, Waves, & Tides
- ADCIRC + unSWAN wave model
- River boundary conditions at 4 hand-off points
- Wind fields provided by NWS operational NAM or Asymmetric Vortex Wind Model (if hurricane)